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The quantum dynamics of the fall of a charged particle (i.e., the capture of a charged particle) onto a stationary
dipolar target is considered. Extending previous approaches for the calculation of rate coefficients in the
lowest channels, we now determine rate coefficients for all channels until the quantum rate coefficients converge
to their classical counterpart. The results bridge the gap between the capture of light particles (electrons) and
heavy particles (ions) in the limit of sudden dynamics, when the collision time is short in comparison to the
rotational period of the molecular target. The quantum-classical correspondence is discussed in terms of
semiclassical numbers of channels which are open for capture in effective potentials formed by charge—dipole
attraction and centrifugal repulsion. The quantum capture rate coefficients are presented through classical
rate coefficients and correction factors that converge to unity for high temperatures and whose behavior at
ultralow temperatures, for not too small values of the dipole moment, is determined by semiclassical numbers

of capture channels.

1. Introduction

The fall of a particle onto an attractive center is one of the
standard problems treated within classical as well as quantum
mechanics (see, e.g., ref 1, section 14, and ref 2, sections 18
and 35). The process is characterized by capture cross sections
or rate coefficients which correspond to a close approach of
the attractive center by the particle. The quantum calculation
of the capture cross section is based on the solution of a set of
radial wave equations that describe the approach of the center
accompanied by transitions between states of different relative
angular momenta. These equations represent a simplified case
of the more general problem of complex formation in collisions
of ions or electrons with molecular targets such as described
by the equations for inelastic scattering between the collisional
partners with standard boundary conditions at large separations,
and absorbing conditions on the surface of the complex.>~¢ The
simplification arises from the approximation that all internal
degrees of freedom of the target are disregarded and its
orientation in space is assumed fixed. In collision theory, the
latter assumption is known as the sudden approximation. It is
valid when the characteristic collision time is short compared
to the period of rotation of the target. This approximation
constitutes an important limiting case of inelastic and reactive
scattering, and it is the issue of the present article.

If the potential U determining the motion of the particle is
spherically symmetric, i.e., U = U(R), the calculation of the
capture cross section is straightforward, both in classical and
quantum mechanics (R denotes the center-of-mass distance
between the collision partners). The calculation is facilitated
by the conservation of the vectorial integral of motion, the orbital
angular momentum, which gives rise to two exact quantum
numbers, I and m. The capture problem becomes one-
dimensional, and the fall is assumed to occur once a particle
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traverses centrifugal barriers which are formed by the superposi-
tion of the attractive potential and repulsive centrifugal interac-
tions. If the potential is anisotropic, such that it depends also
on the polar and azimuthal angles of the incoming particle in a
body-fixed frame attached to the target, U = U(R, v, ¢), the
capture dynamics is fully three-dimensional and therefore more
complicated. However, if the potential is axially symmetric,
U = U(R, y), there exists a scalar integral of motion, i.e., the
projection of the orbital angular momentum onto the symmetry
axis, m, and the capture dynamics becomes two-dimensional.
It becomes even simpler when the anisotropic part of the
potential turns out to be proportional to R™2. Then it can be
combined with the rotational kinetic energy to form an expres-
sion that serves as an additional integral of motion. This integral
of motion, specified by two quantum numbers n and m, can be
used to construct a set of one-dimensional radial equations which
is formally similar to that for isotropic capture. A potential that
satisfies the above condition is the charge-permanent dipole
interaction superimposed on an arbitrary isotropic potential.
When the latter is an isotropic charge-induced dipole interaction,
one arrives at the problem of the fall of a charged particle onto
a polarizable stationary dipolar target. The problem then is a
simplified case of the capture of a charged particle by a neutral
target with a long-range interaction which falls off as R~2 and
R™*. What is missing in this model is the charge—quadrupole
interaction and the anisotropic part of the polarization interac-
tion. As a reward for the simplification, one can apply analytical
treatments at least for some parts of the problem. The considered
model was used as an important limiting case in the capture of
ions by molecules,”® and it represents the basis for one of the
approaches to the attachment of electrons to molecules, the so-
called extended Vogt—Wannier model.'%!!

The purpose of the present article is the study of the full
quantum capture dynamics of the fall of a charged particle onto
a stationary dipolar target, with the aim to go beyond the low-
energy approximation for s-wave capture elaborated by Fabri-
kant and Hotop.'®!!" We include higher-order waves into the
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capture cross sections and rate coefficients and compare the latter
with their classical counterparts. This goal was already partly
achieved in ref 12 when we suggested an analytical approxima-
tion for the rate coefficients that interpolates between accurate
s-wave capture rate coefficients and all-wave capture rate
coefficients for dipoleless molecules such as treated earlier.'?
Our interest in more accurate treatments is also raised by the
observation'? that the energy-dependent rate coefficients very
rapidly attain their classical limit, and the temperature-dependent
rate coefficients (i.e., the energy-dependent rate coefficients
averaged over a thermal distribution of collision energies)
virtually coincide with the classical Langevin rate coefficient
(in a R~* potential) for temperatures at which the p-wave capture
becomes classically open. This seemingly weak quantum effect
in the rate coefficients was interpreted in ref 13 as the
consequence of strong compensating quantum effects such as
tunneling and overbarrier reflection. As a result, it became
possible to design a simple analytical expression for the rate
coefficients from zero to high temperatures. In the present
article we address a similar question for sudden dynamics of
capture in the field of a stationary polarizable dipole. Cor-
respondingly, our plan is the following. In section 2 we briefly
review the theory of the quantum fall in the field of the
considered potential. Section 3 presents the results of numerical
calculations of capture probabilities and rate coefficients. Section
4 describes the classical theory of capture and provides analytical
expressions for the rate coefficients. In section 5 we present a
comparison of quantum capture rate coefficients with their
classical counterparts. Section 6 concludes the article.

2. Quantum Description of Capture Dynamics

The potential of a charged particle in the field of a stationary
polarizable dipole is given by

U(R,y) = —quy cos y/R* — ¢’a/2R’ (1)

where R is the center-of-mass distance between the charged
particle and the neutral dipolar target, up is the dipole moment
and a the polarizability of the target, ¢ is the charge of the
incoming particle, and y is the angle between the dipole axis d
and the collision axis R. If the vector d defines the polar axis
for the incoming particle, which is possible for a stationary
dipole, i.e., in a space-fixed coordinate system, the Hamiltonian
of the particle becomes

22 (2
W L@D s yry @

=T
2udR 2UR

where L is the operator of the orbital angular momentum and
u is the reduced mass of the system. When the charge—dipole
term in eq 1 is combined with the centrifugal term in eq 2, one
can rewrite the expression for A as

22 0 2
I:I — _h_dz + K(Mf) _ ﬂi 3)
2udR 2uR 2R

where V =12 — 2qupu cos y. Since V commutes with A, the
operator V can be replaced by the set of its eigenvalues V,. This
has the result that the three-dimensional Hamiltonian ﬁ(R,y,d))
is reduced to a set of uncoupled one-dimensional Hamiltonians
I:IV(R), provided that d is chosen as the quantization axis for
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the orbital angular momentum. As a result the wave equation
assumes the form'®!!

h2d* v, qza}
- + — — (Y, (R,D) = EYy (R, D)
{ 2udR®  2uR® 2R Ve, Ve,
4)

The solution of this equation, with an absorbing boundary
condition at small values of R (incoming and outgoing waves
at large R and only incoming waves at small R), yields the
capture probabilities P,(E) which in turn determine the integral
capture cross section

J‘L’ﬁ2
o) = Tk Z P,(E) (5)

In what follows we use the scaled quantities introduced in ref
13, i.e., the distance p and the energy € where p = R/R;, and
& = (uRP/RY)E with Ry, = (uq*a)"*/h. Using these variables, eq
4 assumes the form

{ A 1} ©=ep.0 (6
2dp2 2p2 2p4 ws,vp - 8/(/}8,1/’)

Here, v, are successive eigenvalues of the operator ¥ = P -
2d cos vy, with > = L*A? and d = quu,/h>. The eigenvalues
v, = v,(d) can be specified by two indices, m, corresponding
to the conserved projection of the relative angular momentum
onto the vector d, and n, successively enumerating eigenvalues
for a given m. For convenience, we can assume that n takes the
values n = Iml, Im + 11, Im + 11, .... Note that the eigenvalues
V,m With m = 0 are nondegenerate, and those with lml > 0 are
doubly degenerate. Absorbing the subscripts n, m into the
variable parameter v, we rewrite the capture eq 6 as

& v 1 }
—t— - — ,v) = ey.(p, 7
{ 2y 207 2 Y (p,v) = ey (p,v)  (7)

where v assumes any values from the set v, ,,(d). The solutions
of eq 7 give the capture probabilities P(e, v) which generate
the probabilities of capture in the n, m channel as

P, (e d) = P(, v)lv:vn_m(d) ®)

In turn, P, (€, d) define the integral capture cross sections and
the energy-dependent rate coefficients. A scaled version of the
latter, y(e, d), i.e., the ratio of the energy-dependent rate
coefficient k(E) and the energy-independent Langevin rate
coefficient k¥ = 2mq(a/u)'?, is given by

m=co pn=oo

wed)y= X, D g d);

m=—co n=lml

Lnm(Esd) = P, (e, d)/2\2e  (9)

The form of the effective potential in eq 7 shows that capture
occurs as a result of entering the region of high attraction across
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the potential step for v < 0, while for v > 0 it occurs as a result
of crossing a barrier of the height 6 = v?/8.

For d = 0, the eigenvalues of ¥ are v, ,l4—0 = n(n + 1), such
that eq 7 can be rewritten as

&+ 1 }
—CS TS = e = ey e (10)
{ 2dp> 200 2007 !
with the understanding that the eigenvalue /(I + 1) repeats
2] + 1 times, and / assumes the values [ = 0, 1, 2, .... Then eq
9 can be represented as

I=c0

2ed) =5 = X, QL+ Dyl xle) = Ple)/2\2e
1=0
(1)

where P/(¢) is the capture probability for the radial eq 10.
Obviously, eqs 10 and 11 are the standard equations for capture
in an isotropic potential —1/2p% yielding asymptotically the
Langevin (L) and Vogt—Wannier (VW) limits, y(&)lss; = y*
= 1 and y(&)l.—o = %YV = 2. Formally, eq 10 is similar to eq
6; however, the essential difference is that the long-range
interaction in eq 10 is attractive only for [ = 0 with p™*
asymptotic behavior, while there are a finite number of attractive
terms with p~2 asymptotic behavior in eq 6.

Once the y,.(&, d) are found, they directly define the partial
and total thermally averaged rate coefficients, ¥,.(0, d) and

X6, d)

;‘gn,m(e,d) = fow K& d) X \j2/m93exp(—6/0)@de

m=co p=oo

Y X Tl (12)

m=—co n=lml

%(6.d)

where the second factor in the integrand is the Maxwell—
Boltzmann distribution that contains a reduced temperature 6:

0 = (uR kg/hHT = (¢ o’ ky/RHT (13)

The calculation of capture probabilities P, (&, d) is straight-
forward once the eigenvalues v, ,,(d) are known. As mentioned
in ref 12, they coincide, though in a different parametrization,
with the eigenvalues of a rigid dipolar rotor in a uniform electric
field. These eigenvalues were used for the calculation of
adiabatic channel potentials for the capture of dipolar rotors by
ions,'*!> and they are available in analytical approximation for
a wide range of the parameters.'®!” For small enough d, the
v,.m can be calculated by a second-order perturbation approach
with the result

_ dz( 3m* — I(I + 1) )
VDl = 1+ D) 2\l + DRI — D2+ 3)
(14)
and voy = —(2/3)d*>. We note in passing that the latter result

for charge—dipole interaction corresponds to the second-order
perturbation treatment on the basis of free radial s- and p-wave
motion of the incoming particle. Within the same approach, one
can estimate the second-order effect for the charge—quadrupole
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Figure 1. Capture probabilities P = P(4, 17) (see text; the heavy lines
correspond to 7 = —1, 0, 1, 2; for n = 0, 1, 2, they correspond to the
capture probabilities for a dipoleless target with I = 0, 1, 2; the open
symbols mark the positions where P = 1/2).

interaction which yields a term proportional to R™* in the
interaction potential and for the anisotropy of the charge-induced
dipole interaction.

3. Quantum Capture Probabilities and Rate Coefficients

The capture probabilities P(e, v), found by numerical solution
of eq 7, are represented in Figure 1 in the form of P(4, 1) as a
function of the variables A(¢) and n(v) given by

Me) = \f(1/4) +2\2e — 172, n) =N(1/4) +v — 1/2
(15)

In these variables, A(¢) equals [ each time when the energy ¢
coincides with the height (I(I + 1))*/8 of the reduced centrifugal
barrier of the effective potential in eq 10 for [ > 0, and 7(v)
equals / each time when v coincides with /(I + 1), i.e., the
eigenvalues of v for d = 0. The probabilities Pj(¢) are drawn
as graphs in the planar sections specified by the points
1n(v) = [; the marked points A(¢) = [ indicate the position where
P/(¢) = 1/2. Note that according to eq 15 the variable # is real
only for v = —1/4. For v < —1/4, it can be redefined to make
it real also. If one puts y(v) = —Im{[(1/4) + v]"?} — 1/2 for
v = —1/4, then one will have a single continuous variable 7(v)
that corresponds to any value of v and which equals —1/2
for v = —1/4. The significance of this point is seen in the
analytical perturbation expression (valid for small € and 1) for
P(e, v) (see refs 10 and 11) which shows that, for > —1/2,
the capture probability disappears as €772, while, for 7 < —1/2, at
& = 0 it starts from nonzero values. For = 0, this energy
dependence conforms with Bethe’s law'® for s-wave capture, and,
for 7 = I, [ > 0, it corresponds to Wigner’s law'® for capture
with higher angular momenta.

The rather simple structure of P(4, %) in the following will
be used for the analysis of the d-dependence of the capture
probabilities P, ,,(d). For d = 0, there exist only curves P/(4) in
the sections y = [, 1 =0, 1, 2, .... These are the probabilities of
capture by a dipoleless polarizable target.'’> Analytical ap-
proximations valid over a wide range of & are available for
1=0,1, 2,3, 4; see ref 12. With small nonzero d, each curve
Py(4) splits into [ + 1 components P, (1) where n assumes the
same value as /, and m = 0, £ 1, ..., £[. With increasing d, the
components P, (1), which are shifted to the left of P,(41), move
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Figure 2. Number of eigenvalues N5C~U(d, a) of the matrix v(d) which
are below the parameter —a that conventionally defines a cd semiclas-
sical channel as an open one (the straight dashed line corresponds to
the classical number of attractive cd states; see section 5).

further in the direction of negative values of 7. The curves
P,(4), to the left from the section plane = —1/2, show a
nonmonotonic dependence on A (or €) in their trend to the high-
energy asymptotics P,,,(A);»; — 1. This behavior can be
interpreted as the result of a reflection of the incoming wave,
entering through the strongly attractive R™2 potential, by the
additional drop of the potential from the R™* interaction. The
probabilities, which correspond to large negative values of v,
eventually cluster at the left-hand side of the box shown
in Figure 1. They assume the shape of step functions,
P,.,(A) — O(A). This is the classical probability of capture in
the field of purely attractive charge—dipole (cd) effective
potentials which are proportional to R~> One can conveniently
define the semiclassical number of capture channels N5¢~4(d)
for this type of interaction as the number of the eigenvalues of
v that do not exceed a certain negative value —a, presumably
being close to —1/4. If one puts the respective capture
probabilities equal to unity and neglects the capture in all other
channels (being not purely repulsive), with the help of eq 9
one obtains an estimate of the SC-cd rate coefficient for capture
through these channels, i.e.

ZSC_Cd(G,NSC_Cd) = NSC_Cd(d, a)/ 27160 (16)

The dependence of N5¢~*U(d, a) on d, for various values of a,
is shown in Figure 2. The increments of N°(d, a) are either
1 or 2, depending on the value of m (m = 0 or Iml > 0) in the
eigenvalue v,,, that just becomes less than —a. One also sees
the sensitivity of the positions of the steps to the chosen values
of a.

In the general case, the rate coefficients (e, d) and ¥(0, d)
should be calculated from numerically accurate values of the
capture probabilities P, ,. An example of the dependence of
on 4 is shown in Figure 3 together with the partial contributions
Y for d =2 when N¢~¢4(d, @) = 1. In this case, the monotonic
decrease of the total energy-dependent rate coefficients is
essentially determined by the contribution of four partial terms
%0.0s %10, X1.+1, while higher terms only produce undulations of
(A, d) around the classical asymptote. This behavior is
qualitatively similar to the capture by nonpolar targets (see
Figure 2 of ref 13). The quantitative difference is that, in the
present case, the charge—dipole interaction extends into the
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Figure 3. Quantum energy-dependent reduced capture rate coefficients
(A, d) and their partial contributions y, (4, d) for d = 2. Each
n-manifold encompasses curves with Iml = 0,1,..., n (the dotted
horizontal line corresponds to the Langevin limit).

x(0,d)

1 10

Figure 4. Quantum temperature-dependent reduced capture rate
coefficients y(6, d) for several values of d (see text; the circles mark
the curve for the critical value of d* = 0.6395 corresponding to
v = —1/4; the dashed curves are for d < d*; the full curves are for d
> d*; the curves are labeled by the values of d, and the dotted horizontal
line indicates the Langevin limit).

energy region across which y(4, d) shows a strong decrease with
increasing energy. The temperature dependence of the rate
coefficients ¥(0, d) is presented in Figure 4 for various values
of d. For d below the critical value d* = 0.6395, this dependence
was already discussed in detail,'? so that we dwell here on cases
with d > d*. An interesting feature is the clustering of curves
with d =1, 2, 3 and with d = 4, 5, 6, 7 in the low-temperature
region. This is explained by the fact that the SC-cd number of
states is the same (N5C"% =1 ford = 1, 2, 3 and N3¢« =3
for d = 4, 5, 6, 7), while the difference between the curves
within the same cluster comes from the stronger reflection of
the incoming wave at the drop of the polarization superimposed
on the more gradual cd attraction.

The given results allow one to check the accuracy of an
approximate analytical expression for ¥(6, d), i.e., ¥**°(0, d),
suggested in ref 12. The function »*?(0, d) there was
expressed by the rate coefficients ¥(0) = (0, d)ly=o, 75(0)
= %0.0(0, d)l—o (the total and s-wave capture rate coefficients
for a dipoleless target), ¥33*(0) = 540, NSC~cd)|yscei
= 1/(276)'?, and an additional fitting function G(6, d) that
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Figure 5. Comparison of accurate quantum temperature-dependent
capture rate coefficients y(6, d) and approximate values y**P(0, d) given
by eq 17 (d = 0.5, 1, 2, 3; 0 is the scaled temperature; the curves are
labeled by the values of d, and the dotted horizontal line is drawn for
orientation).

introduces the dependence of %*"P(6, d) on d. This ap-
proximation was of the form

770, d) = 7(0) + [76510) — 705(O)] X
[l — exp(—G(6,d)] (17)

Analytical expressions for the fitting functions entering the
rhs of eq 17 were given in ref 12. The accuracy of the
approximate expression for the capture rate can be judged
from the ratio %(0, d)/3***(0, d) plotted in Figure 5. We see
that, for d < 1, the accuracy of the approximation in eq 17 is
better than 5% at 6 > 0.01, while it deteriorates rapidly with
the increase of d.

4. Classical Capture Probabilities and Rate Coefficients

The classical rate coefficients for the capture in the potential
in eq 1 can be calculated analytically by using the same integral
of motion as in the quantum calculations.’ The classical
Hamiltonian is of the form

2
o Ph, WPy ®) g s)
2u 2uR? 2R*

where Py, P, P, are the momenta conjugate to the coordinates
R, y, ¢. The integral of motion W(P,,Py,y.¢) = LX(P,,Py,y )
— 2qup cos y can be expressed, with a proper change of
variables, through their asymptotic values. Explicitly, taking
these variables as the initial angular momentum Z; and the initial
orientation angle cos y;, we write W = L? — 2qup cos y;. The
classical capture probabilities PCY(E, W), which are the coun-
terpart of the quantum quantity P(e, v) for the Hamiltonian in
eq 18, are expressed by the respective step functions O(x).
Explicitly, one has

PUE, W) = O(E — D(W)) (19)

where D(W) is the centrifugal potential barrier for the effective
potential in eq 18, i.e.

Dashevskaya et al.
— ur 22
D = W -O(W)/8u"g a (20)

Yet another step function causes the barrier height to disappear
for a purely attractive effective interaction. When U and W are
expressed through the variables L; and y; as well as the parameter
Up, the classical counterpart of the quantum capture probability
in eq 8 can be written as

PUE, Ly v) = PYEW)lyoyyy (21

According to eq 19, the capture occurs both in asymptotically
attractive (cos y; > 0) and repulsive (cos y; < 0) channels. The
former corresponds to asymptotically attractive and repulsive
effective interactions (i.e., interactions that comprise the po-
tentials and the centrifugal energy), while the latter corresponds
to repulsive interactions. In the calculation of energy-dependent
and temperature-dependent classical rate coefficients ' and 7,
the double summation over the quantum numbers n, m in eq 9
is replaced by a double integration over L; and ;. In contrast
to the reduced quantum rate coefficients which depend on two
dimensionless variables (e, d or 6, d), it turns out that the
reduced classical rate coefficients depend on one dimensionless
variable 0nly,7’8 i.e., on the classical dimensionless temperature
0%, defined by

0% = 20U, T/ (22)

The explicit expression for 7/(0"), which is obtained through
a straightforward integration of the probabilities from eq 19 over
L;, y; and the Maxwell—Boltzmann distribution, reads

Cl
Pty =1 4141 0

—(
2\jn9CI 2 T

1 — exp(—1/6%)) —
%erf(l/\lﬁ) 23)

where erf(x) = (2/v/7) Jsexp(— #2) dt. Equation 23 conforms
with the numerical results from classical trajectory calculations
for ion-polarizable dipole capture in the sudden limit,® but it
differs from the analytical expression for capture rate coefficients
in the so-called ACIOS approximation (eq 28 from ref 20); note
that the latter, for a charge—dipole system, is identical to the
sudden approximation discussed here.? The difference presum-
ably can be ascribed to neglect of the capture in ref 20 through
the asymptotically repulsive cd interaction.

The two limiting expressions of (0" correspond to the
classical capture by a stationary unpolarizable dipolar target
(6! < 1) and by a nonpolar polarizable target (6! > 1):

\Cl
790 = {1/2 7,

GCI <1

24
0 > | (24)
A plot of ¥°'(6%") is shown in Figure 6. Also shown are the
high- and low-temperature approximations to /(6" such as
given by eq 24. The anisotropic character of the capture can be
conveniently characterized by rigidity factors?! Jfrigia> 1.€., the ratio
of the capture rate coefficients to their counterparts within the
so-called locked-dipole model or the phase-space theory (PST)
when the orientation of the dipole is assumed to be directed
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Figure 6. Classical reduced rate coefficients ' as a function of the

reduced temperature 6 (full line, see eq 23; the dashed lines correspond
to the low- and high-temperature approximations given by eq 24).

along the collision axis. In our case, the sudden rigidity factor
/4 is equal to the ratio of ¥“/(6') from eq 23 and 5ér = 1 +
2/(w6)2. The high- and low-temperature asymptotic values
of f ;“g}g are 1 and 1/4. The former value reflects the vanishing
effect of the anisotropy at high temperatures, while the latter
illustrates the average value of the projection of the unit dipole
moment onto the collision axis over the attractive collision
hemisphere with cos y; = 0 (see also section 6).

5. Comparison of Quantum and Classical Rate
Coefficients

The comparison of classical and quantum rate coefficients
can be accomplished once 6% is related to 6. From eq 13 and
22 we obtain

0 = 20/d” (25)

so that, for the same variable 0 and different values of d, one
can directly compare the two reduced rate coefficients, ¥(6, d)
and 7°'(260/d). 1t is clear that (60, d) will approach ¥“'(26/d?)
at high temperatures. We first concentrate on low temperatures
where the classical rate coefficients are given by their low-
temperature limit corresponding to cd capture (see eq 24)

7970, d) = d/2\2760 (26)

The low-temperature classical approximation is valid when the
number of channels, which are open for capture through the
charge—dipole interaction, is large. Comparing eq 26 with eq
16, one sees that the factor d/2 in eq 26 should be regarded as
the classical counterpart of the SC number of states, i.e., d/2 =
NE=¢d(d). Figure 7, showing the relative deviation Ay(d) =
(NSCed — NC —edy/NCI=ed " demonstrates how the SC number of
states N5C~U(d) converges to N =9(d).

In the general case, when N is not large and the polarization
interaction is not neglected, the comparison can be accomplished
through the numerically calculated quantum rates and their
classical counterparts given by the analytical expressions.?
Figure 8 shows such a comparison for different values of d,
which correspond to qualitatively different relations between
NSC~ed and N with ¢ = 1/4: N5¢ 4 = 0 for d < d*,
NSCed 5 NC—ed for ¢ = | and 4, NS¢~ ~ NCO<d for d = 2 and

J. Phys. Chem. A, Vol. 113, No. 52, 2009 14217

—rT T VT g T——rTTTTY

ot M |
0.0 N R I N AN s

| \] i b b i i

NS (d)/NCI—cd (d) it}

1.0 e | " PP PR | N - Laaald
0.5 1 2 5 10 20 50 100 200

d

Figure 7. Convergence of the semiclassical numbers of capture
channels N5¢~U(d, a) to their classical counterparts N°~¢(d) for
a = 1/4 (the figure shows the relative deviation,; the dotted horizontal
line is drawn for orientation).
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Figure 8. Correction factor C(6, d) to the classical rate coefficient
(see text, the symbols mark the critical value of d* = 0.6395
corresponding to v = —1/4, the dashed curves are for d < d*, and the
full curves are for d > d*; the filled symbols at the ordinate axis mark
the Fabrikant—Hotop and Vogt—Wannier limits for small nonzero and
zero values of d, respectively; the curves are labeled by the values of
d, and the dotted horizontal line indicates the classical limit).

6, and N3¢~ < N ~d for d = 3 and 7 (compare Figures 2 and 7).
We first note that the low-temperature dependence of ¥(0, d)) is
determined by the low-energy dependence of (¢, d) (see section
3), and therefore %(0, d)) diverges as T~ for 7 < —1/2 and as
T" for —1/2 < 5 < 0. Since the classical rate ¥°(0, d)) diverges
as T2, it is convenient to compare quantum and clas-
sical rate coefficients in terms of the correction function
C(0,d) = %(0,d)/x“(20/d%). One sees from Figure 8 that the
convergence of C(6, d) with increasing 0 to its asymptotic value
C(6, d)lg; — 1, depending on d, occurs from different sides of
the horizontal dotted line C = 1. This behavior of C(60, d) can
be rationalized by the observation that, for & — 0, there are
three different types of the limits of C(6,d)lg«;: for 0 < d < d*,
C(0, d) — 0 as 0>, —1/2 < 5 < 0 (Fabrikant—Hotop limit);
for d = 0, C(0, d)l;=p — 2 (Vogt—Wannier limit); for d > 1,
C(0, d) — NSC 4 NCI=ed = 2NSC=ed()/d (semiclassical limit).

The existence of two different limits for d < d*, for very
small nonzero value of d and for d = 0, predicts a nonmonotonic
dependence of C(6, d) on 6 which is explained by the interplay
between capture induced by the polarization and charge—dipole
forces. With decreasing 0, C(6, d) first increases, as it should
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when the capture occurs in the quantum regime for a —1/R*
potential, and then decreases, partly quenching the classical 6~
divergence in the quantum regime of capture for the —1/R?
potential. As seen from Figure 6, the effect of the cd interaction
begins to show up at about 6! ~ 0.1, the crossing point between
the dotted curves corresponding to the high- and low-temper-
ature approximations for x“(6<"). Considering the relation
between 6 and 6 as given by eq 25, we therefore expect that
the effect of the cd interaction, which manifests itself in the
decrease C(6, d) with decreasing 6, will show up below
0 ~ d*10. This feature is illustrated by the graphs of C(0, d)
for d = 0.5 and d = 0.2. For very small d, the function C(0, d)
increases with decreasing the temperature, being approximately
equal to ¥(0) and as if tending to the Vogt—Wannier limit 2,
and then sharply drops to the Fabrikant—Hotop limit zero at
zero temperature across the narrow temperature range of about
d*10.

For d > d*, the behavior of C(6, d) is almost monotonic as
a function of € and nonmonotonic as a function of d. The latter
feature is related to the fact that the ratio NS¢ ¢9/NCI~¢d i5 an
undulating function of d; see Figure 7. Interestingly, the zero-
temperature semiclassical limit (arrows at the ordinate axis) is
approached already for d = 1, when only one cd classical
capture channel is open. Small deviations of the low-temperature
portions of the graphs from the zero-temperature limits indicate
a weak effect of the polarization interaction which, in principle,
could be expected to manifest itself as a partial reflection of
the incoming wave from the additional drop of the R~* potential
on the background of the much smoother R~ interaction
potential. On the whole, one observes an increasing approach
of the curves with d = 1—7 to the horizontal line (classical
limit) when d increases. The rather small deviation of the curves
C(0, d) from unity for d = 2 and d = 6 across a very wide
temperature range is the consequence of the fact that, for these
values of d, the adiabatic channel cd and the classical cd number
of states are accidentally nearly equal to each other.

6. Conclusions

By extending the interaction potential to that of stationary
dipolar polarizable targets, the present work generalizes our
previous study'? of the quantum fall (capture) of charged
particles onto nonpolar polarizable targets. The calculation of
energy- and temperature-dependent capture rate coefficients is
then one of the simplest within the treatments of the capture in
anisotropic interactions since here exists an extra integral of
motion that considerably facilitates the computations. As in ref
13, we have found a fast convergence with increasing temper-
ature of the quantum rate coefficients to their classical coun-
terparts. This is the result of a “smoothing” of the discrete partial
rate coefficients that is caused by large quantum corrections in
crossing the centrifugal barriers, by the splitting of the barriers
by the charge—dipole interaction, and by the absence of wave
reflection at the drop of the attractive effective (charge—dipole
plus centrifugal) potentials that are proportional to R™2.

The capture by a stationary target with an anisotropic
interaction is equivalent to the sudden approximation in collision
theory, such that the results of this work are quite generally
applicable to the calculation of complex formation rates in
collisions of charged particles (electrons or ions) with slowly
rotating molecules. In a translationally and rotationally canonical
ensemble of charged particles and polarizable dipolar molecules,
the capture regime with respect to rotationally inelastic events
en route to complex formation is controlled by the value of an
appropriate Massey parameter &, the ratio of the mean collision
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Figure 9. Comparison of the rigidity factors f;ia(6") for sudden (full

curves) and adiabatic (open circles) dynamics as a function of the

reduced temperature 6, for the classical capture of a charged particle
by a dipolar polarizable target.

time to the mean rotational period.® In the spirit of the discussion
in ref 8 and in connection with eqs 2.11—2.14 of ref 8 as applied
to diatomic molecules, we write the Massey parameter here as

E= %\]B/kBT Vd (27)

where B is the rotational constant of the diatom (in energy units;
for polyatomic molecules, B should be replaced by a certain
mean of rotational constants). The sudden regime corresponds
to the condition & < 1, while the reverse condition, & > 1,
determines the adiabatic regime when a molecule rotates fast
about the collision axis. In both limiting cases, one can use
simplified treatments of the capture, considering either the
capture by a stationary target (the sudden case) or by a target
whose projection of the intrinsic angular momentum (i.e., the
rotational orientation) follows the collision axis (the adiabatic
case). Intermediate cases between sudden and adiabatic dynamics
present a complicated problem that requires extensive numerical
calculations within standard molecular collision theory.

When d is of the order of unity or slightly larger, which is
the case for the capture of electrons by molecules, the sudden
limit is reached when the condition 7 > B/kg is fulfilled. For
heavy molecules (for which B/kg is of the order of fractions of
kelvins), therefore, most temperatures of practical interest
correspond to the sudden limit, provided that the capture can
still be considered independent of other inelastic events. For
the capture of muons or ions, d, which is proportional to the
reduced mass of the colliding partners, is normally much larger
than unity. Then, the sudden limit is attained at considerably
higher temperatures, tens of kelvins for muons and hundreds
of Kelvins for ions. Below this range the adiabatic description
of the dynamics is more appropriate. Under the condition of
classical motion of the partners, the transition from adiabatic
to sudden dynamics was investigated in ref 8. The rate
coefficients in the intermediate regime can conveniently be
represented by rigidity factor fi,q Which depends on &; see refs
8, 15, and 22—25. It was shown (see, e.g., ref 25) that the values

of fiigia are between those for adiabatic and sudden limits, f ii‘io,diﬁ

< fuigia < f35 such that two quantities, f3iuq and f %54, can serve
as useful lower and upper estimates of fisq in the intermediate

regime. This is illustrated again in Figure 9 which shows plots
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of f3494 defined in section 5 and f%4 found from the adiabatic
channel (AC) approach.®!322 The rather narrow range between
fid and £ reflects the only weak effect of rotationally
inelastic events on the way to the formation of the complex.
The question, whether the same persists in quantum capture,
i.e., whether the rate coefficients can be usefully bracketed, on
the one hand, between those presented in this paper for sudden
capture and, on the other hand, for the adiabatic capture such
as described by the standard AC approach, needs to be
elaborated in the future.
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